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Diffusion model 

 The diffusion model is used to determine the concentration profile of the mother liquor 

when perovskite precipitate is observed. This is calculated in four main steps. The first step is to 

create a mathematical model of one-dimensional diffusion. This is necessary to account for the 

species diffusion that results in precipitation, and to quantify species concentration at any given 

point in time and position. The second step is to calculate the initial input parameters for the model 

from the experimental data. The third step is to optimize the remaining free parameters to fit the 

diffusion model to the experimental data. With a satisfactory fit, the model reflects the 

experimental data. Finally, once all parameters have been fit, the model can then be queried at the 

time and position of crystal formation to determine the concentration conditions necessary for 

crystallization. 

Mathematical Model of Antisolvent Diffusion in One Dimension 

The following model approximates antisolvent concentration in a vial as function of 

position and time. This model calculates diffusion in one dimension using a finite volume 

approximation of Fick’s second law. This model operates under several assumptions of 

antisolvent-solvent mixture: (1) the antisolvent is constantly evaporating and condensing from the 

vial; (2) the antisolvent and solvent are an ideal mixture, such that the non-ideal volume of mixing 

is zero; (3) any changes in volume result from the same volume of antisolvent diffusing into the 

vial; (4)  no interaction between the molecules of the solvent and antisolvent impede or accelerate 

the rates of diffusion as described by Fick’s first law3. 

The first step in creating this model is to discretize the space in the vial into a sequence of 

bins. Each bin, i,  has a defined height, h, and starting species concentration, C. Diffusion from bin 

to bin is calculated based on the distances from the centers of each bin. For each bin, the change 

in concentration of antisolvent with respect to time is given by: 
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This discretized formula calculates the rate at which the concentration in each bin changes in a 

single time step, and can be numerically integrated to determine the concentration in each bin as a 

function of time. 

 This baseline, finite volume approximation for one dimensional diffusion is modified to 

reflect liquid volume build-up. The model assumes the solution behaves as an ideal mixture and 

the bin height increases linearly with species concentration. Bin height is written as a function of 

molar concentration, molar volume, and a height to volume scaling constant. The height to volume 

scaling factor is determined experimentally and converts from the recorded liquid height to 

volume. It is abbreviated as 𝑅 and is in units of cm/microliter. 

 

ℎ𝑖
𝑡 = 𝑛𝑎𝑉𝑎𝑅 + 𝑛𝑠𝑉𝑠𝑅 + 𝑛𝑜𝑉𝑜𝑅                                                (4) 

 

This relationship connects the height of each bin to the moles of species present within it. 

Figure S37. provides a visual description of the relationship between concentration and bin height. 
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Figure S37.  A diagram indicating how the influx of antisolvent molecules changes the height 

of the bins 

 

With dynamic bin heights, equation (2), is rewritten, where the constant distance between 

the center of two bins, 𝛥ℎ, is replaced by the dynamic distance between the bins, ℎ𝑖. 
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Equation (5) holds for the middle bins, where there is movement of each species into two 

adjacent bins. For the bottom bin, there is simply no diffusion into a lower bin. 

𝐶𝑖
𝑡+1−𝐶𝑖

𝑡

𝛥𝑡
=

1

ℎ𝑖
(𝐷

𝐶𝑖+1
𝑡 −𝐶𝑖

𝑡

ℎ𝑖+1
2

+
ℎ𝑖
2

)                                                    (6) 

The top bin has a few more factors affecting the change in concentration of the antisolvent. 

The bin is in contact with the air above the vial, from which antisolvent is condensing into, and 

evaporating from. We assume a constant influx rate, 𝑘𝑖𝑛, at which molecules enter the top vial; 

this is reasonable because the vapor pressure of antisolvent above the vial is constant throughout 

the experiment, so long as any liquid antisolvent remains.  In principle, kin could be related to the 

impingement rate on the surface implied by the kinetic theory of gases and the vapor pressure of 

the antisolvent, but we treat it as a fitting constant.  The evaporation of antisolvent from the top 

layer is assumed to follow Raoult’s Law, 4  such that the total rate is the product of an influx 

constant, kout and the mole fraction of antisolvent, Xi. in that top layer.  Putting this together, the 

expression for antisolvent diffusion in the top bin is given by 
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Calculating the molar fraction of antisolvent, 𝑋𝑖, at time t requires the calculation of moles of 

solvent and antisolvent in the bin.  Calculating the moles of antisolvent is straightforward: 

𝑛𝑎 = 𝐶𝑖
𝑡𝑅−1ℎ𝑖

𝑡                                                              (8) 

The moles of all remaining species in the solution, 𝑛𝛿 , can be calculated with the same method: 

𝑛𝛿 = ∑ 𝑅−1ℎ𝑖
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𝑡)                                                           (9) 

Therefore, the mole fraction of antisolvent is: 

𝑋𝑖 =  
𝐶𝑖

𝑡𝑅ℎ𝑖
𝑡

𝐶𝑖
𝑡𝑅−1ℎ𝑖

𝑡+∑ 𝑅−1ℎ𝑖
𝑡(𝐶𝑜

𝑡)
                                                      (10) 

The changes of concentration of each bin per time step is used to determine the change in 

moles. To convert the diffusion to units of moles, the following expression is used, where 𝑛𝑎𝑖
𝑡  is 

the number of mols of antisolvent “𝑎” present in bin “i” at time t. 

 
𝑛𝑎𝑖

𝑡+1−𝑛𝑎𝑖
𝑡

𝛥𝑡
=

𝐶𝑖
𝑡+1−𝐶𝑖

𝑡

𝛥𝑡
 𝑅−1ℎ𝑖

𝑡                                                     (11) 

By integrating over time, the model can determine the moles of each species in each bin. 

From the amount of mols in each bin, the height of each bin can be defined with equation (4), and 

the concentration of antisolvent, 𝐶𝑖
𝑡, in the bin with the following: 

𝐶𝑖
𝑡 =

𝑛𝑎𝑖
𝑡

𝑅−1ℎ𝑖
𝑡                                                                (12) 

Governed by these formulas, this model can simulate the buildup and diffusion of 

antisolvent in the mother liquor and quantify the concentration of all species in the solution at 

varying heights over the duration of the simulation. While this explanation focused on the 

antisolvent, there are four other chemical species within the solvent that are described by the same 

formulas. However, there is one notable exception. For the remaining species, we assume that 

there is no condensation or evaporation. This means that for equation (7),  𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 are both 

equal to zero. 

 

Bin Spawning and Merging: 

 The height of each bin is determined by the moles of each species. To avoid negative 

moles and heights, the model dynamically merges bins together once they start to reach a 

minimum height threshold. This prevents bins from completely emptying and serves to ensure 

that mass is conserved. Once a bin has reached a minimum threshold it is merged with the 

smallest adjacent bin. The moles of all species in the two bins are added then added together, and 

the resulting height is recalculated using equation (4). 

 Bin spawning is used to address unbounded bin growth and provide greater spatial 

resolution at the top of the column. Unbounded growth occurs if the rate of antisolvent ingress into 

a bin far outstrips the rate of egress, the bin will grow to a critical point at which the antisolvent is 

not capable of diffusing out of the bin in the given timestep. Without any diffusion out, the bin 

grows unbounded until it is undefined. Even without unbounded growth, if the ingress rate of the 

antisolvent into a bin is consistently greater than the egress, the bin exhibits a slow creep in height. 

The larger bin height reduces spatial resolution at an area of the column in which the rate of change 

is greatest. Bin spawning solves both issues and is straightforward to implement. After a bin 

reaches a maximum threshold in size, it is split into two smaller bins of equal size, and the moles 

of each species are divided evenly amongst the two new bins. The height is then recalculated using 

equation (4). 
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Determining Model Starting Conditions: 

The model presented generates a concentration profile over the length of the solution vial 

given starting values and initial parameters. As seen in equations (4-12), there are several input 

values necessary to run the finite volume approximation. The model requires the initial 

concentration values for all species in the mother solution. 

An experiment begins with a 180 L mixture of solvent, inorganic solute, and organic 

solute. The molarities of the organic and inorganic species are experimentally known. 20 

microliters of FAH are added to this mixture.  The moles of all the species given the starting 180 

L mixture can be calculated: 

𝑉𝑡𝑜𝑡𝑎𝑙 ∗
𝑛𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐

𝑉𝑡𝑜𝑡𝑎𝑙
= 𝑛𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐                                             (13) 

𝑉𝑡𝑜𝑡𝑎𝑙 ∗
𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐

𝑉𝑡𝑜𝑡𝑎𝑙
= 𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐                                                 (14) 

With the moles of both species of solutes, the moles of solvent can be calculated, given the molar 

mass and densities: 

𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 𝑉𝑡𝑜𝑡𝑎𝑙 − 𝑉𝑜𝑟𝑔𝑎𝑛𝑖𝑐 − 𝑉𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐                                     (15) 

𝑉𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 𝑛𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ∗ 𝑀𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ∗ 𝜌𝑠𝑝𝑒𝑐𝑖𝑒𝑠
−1                                       (16) 

𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡 =  𝑉𝑡𝑜𝑡𝑎𝑙 − (𝑛𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 ∗ 𝑀𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 ∗ 𝜌𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐
−1 ) −  (𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 ∗ 𝑀𝑜𝑟𝑔𝑎𝑛𝑖𝑐 ∗ 𝜌𝑜𝑟𝑔𝑎𝑛𝑖𝑐

−1 )               (17) 

𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ∗  𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ∗ 𝑀𝑠𝑜𝑙𝑣𝑒𝑛𝑡
−1                                      (18) 

This accounts for the moles of all species in the starting mixture. The final molarities can 

be calculated after addition of 20 microliters of FAH: 

[𝑀]𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =
𝑛𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑉𝑆𝑜𝑙𝑣𝑒𝑛𝑡+𝑉𝐹𝐴𝐻+𝑉𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐+𝑉𝑜𝑟𝑔𝑎𝑛𝑖𝑐
                                      (19) 

With these calculations, the model has all the starting concentrations for the species in the 

solution. The initial height of solution, the duration of the experiment, and the dimensions of the 

solvent column are all given by the experimental data. The diffusion coefficient for each solvent 

system is determined experimentally. The number of bins and the size of the time-steps are free 

for the user to vary. If increased spatial resolution is required, the number of bins can be increased. 

If increased temporal resolution is required, the size of the time steps can be decreased. Note, that 

the increased resolution comes at the expense of computation time. For our modeling, 20 bins were 

used, with a one second timestep. 

The model requires a height to volume relationship, or R value. This allows for the 

conversion between solution height, and solution volume. This is fundamental to the model, and 

its use can be seen in equations (4) and (8-12). 

Calculating the Height to Volume Relationship: 

The height to volume relationship, R, is calculated experimentally and determines liquid 

volume given its height in the solution vial. This scalar constant is calculated by pipetting several 

aliquots of 100 microliters of solvent into an empty vial, measuring the observed height after each 

aliquot, and calculating the slope. This method is repeated for each of the solvent systems, and for 

water. After plotting each 100 microliters aliquot against its measured height, a linear fit is used 

to calculate the slope. A linear fit of the data, shown in Figure S40, indicates that each microliter 

of liquid increases the height by 0.002966 cm. 
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The accuracy of this calibration slope, R, is pivotal in accurately determining the buildup 

of antisolvent and the overall volume of the solution. To validate the calibration slope’s 

accuracy, we examine its consistency against the recorded starting experimental values. As every 

experimental solution is initially 200 microliters and the starting height is reported, we see that 

the calibration slope is consistent with the recorded heights, with the average difference between 

the calculated height and the experimental height being 4.24%. The results of this are shown in 

Figure S38.

 

  

Figure S38.  (a) The final R value, calculated after proper image calibration. (b) The predicted 

liquid height of each experiment given the starting volumes. Each colored point indicates an 

experiment’s measured starting height. The distribution of starting heights around the 

calibration slope in conjunction with their low variance, demonstrates agreement between the 

reported heights, and the R value. 

 

Determining the Diffusion Constant, and Propagation of Uncertainty: 

 

 The diffusion coefficient is determined experimentally through a laser refraction 

experiment. It is possible that inconsistencies in the reference positions of the beam gave rise to 

observed differences in diffusion rate between neat and mixed solvent systems. As the refraction 

study relies on the change in height of a diffracted laser beam over a fixed window, any two start 

and endpoints can be used to calculate the diffusion coefficient. This allows for additional small 

variations in the resulting diffusion coefficient. This change in height of the refracted beam can be 

seen in Figure S39a. 
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Figure S39.  An analysis of uncertainty in the diffusion coefficient calculation for DCM in to 

DMSO. 

 

To account for these two sources of error, every possible diffusion coefficient in the 

window of our laser diffraction experiment was calculated. The width of the laser beam in the 

resulting images of the experiment was used as a starting error, as the height of the refracted beam 

cannot be measured more accurately than its width. This error is propagated throughout the 

calculation of every diffusion coefficient to determine the time points that yield a diffusion 

coefficient with the lowest  uncertainty.  

The diffusion coefficient with lowest propagated error was used for each of the five solvent 

systems. To corroborate our findings, we performed further statistical analyses on all the possible 

diffusion coefficients. The first approach was to calculate all the possible diffusion coefficients 

given our diffraction experiment window. For this case, we did not propagate out the possible 

error. Using all possible diffusion coefficients, a histogram was created to get an estimation of the 

probability function. The center of the bin with the most occurrences is the most likely estimate of 

the diffusion coefficient. See Figure S39b. 

Our second approach for determining the most accurate diffusion coefficient was a kernel 

density estimation, using the propagated uncertainty to determine the width of the gaussian kernel 

centered about each calculated diffusion coefficient. The maximum of the KDE was assumed to 

be the most likely diffusion coefficient. This can be seen in Figure S39c.  All three approaches for 

calculating the final diffusion coefficient gave similar results.  This can be seen in Table S12.   
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Table S12.  Diffusion coefficient analysis data. 

 

 

The diffusion coefficients with the lowest uncertainty would result in a smaller window 

between the possible lower and upper bounds for the diffusion rates. Because of this, the diffusion 

coefficients with the lowest associated uncertainty were chosen as the possible interval for the 

diffusion coefficient. 

 

Model Fitting and Parameter Optimization: 

 Recall from the explanation of the diffusion model, that 𝑘𝑖𝑛 is the rate of antisolvent 

condensation into the solvent solution. The 𝑘𝑜𝑢𝑡 value, along with the antisolvent molar fraction, 

determines the rate of evaporation. These two values  result in the build-up of antisolvent in the 

solution column. The antisolvent buildup of the modeled system and the resulting concentration 

profiles can be changed by tuning these two parameters. To find the optimal 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 values 

for each experiment, the modeled height increase of the solution must match the experimental 

increase. An example of this data can be seen in Figure S40. 

Solvent 

Type 

Original Diff. 

Coeff. 

(m2/sec) 

Histogram 

Diff. Coeff. 

(m2/sec) 

Kernel 

Density 

Diff. Coeff. 

(m2/sec) 

Lowest 

Uncertainty 

Diff. Coeff. 

(m2/sec) 

Lowest 

Propagated 

Uncertainty 

Range 

(m2/sec) 

Average 

Propagated 

Uncertainty 

Range  

(m2/sec) 

GBL 5.88 × 10-10 5.00 × 10-10 5.83 × 10-10 5.26 × 10-10 4.56 × 10-10 2.88 × 10-9 

GBL:DMF 1.33 × 10-10 1.25 × 10-10 1.13 × 10-10 1.08 × 10-10 1.04 × 10-10 6.04 × 10-10 

DMF 8.42 × 10-10 7.50 × 10-10 5.87 × 10-10 5.55 × 10-10 5.66 × 10-10 3.34 × 10-9 

DMF:DMSO 2.06 × 10-10 1.75 × 10-10 2.05 × 10-10 2.07 × 10-10 7.50 × 10-11 3.12 × 10-10 

DMSO 1.33 × 10-9 1.10 × 10-9 1.30 × 10-10 1.24 × 10-9 2.79 × 10-10 1.29 × 10-9 
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Figure S40.  Solution height data for the PbI2 / aep / DMF:DMSO reaction. 

 

The 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 constants are fit to agree with the experimental solution heights. Sum of 

square error (SSE) between the model height and the experimental heights at every time point 

defines the objective function to minimize. Before choosing the optimization algorithm, we first 

assessed the numerical stability of the objective function to different candidate values of the 

parameters . For all 47 experiments, there is a well-defined local minimum when the parameters 

are approximately equal, and the SSE becomes undefined when they have very different 

magnitudes. A representative example of this topology can be seen in PbI2 / aep / DMF:DMSO 

shown in Figures S41. This sort of behavior is physically reasonable, as condensation and 

evaporation rates should be similar in magnitude. Reasonably, one would not expect to see 

incredibly high rates of evaporation, with low condensation, or vice versa. The undefined values 

are also unsurprising. Remember from equation (4) that our bin heights increase with antisolvent 

concentration. If the antisolvent condensation rate far outstrips the outward rate of diffusion and 

the evaporation rate, the height of the bin will grow rapidly. Eventually it will reach a critical point 

at which the antisolvent cannot diffuse out of the bin given the time-step. The bin height will grow 

unbounded and eventually lead to undefined values. This behavior explains why the SSE is 

undefined when 𝑘𝑜𝑢𝑡is less than 𝑘𝑖𝑛. 
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Figure S41. (a) Mesh Plot of the SSE for 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡for the PbI2 / aep / DMF:DMSO 

reaction. Note the valley of minimums along the line 𝑘𝑖𝑛= 𝑘𝑜𝑢𝑡 and (b) different view of the 

mesh plot focusing on 𝑘𝑖𝑛 vs SSE. 

 

  

Finding Seed Boundaries for 𝒌𝒊𝒏 and 𝒌𝒐𝒖𝒕 : 

 Knowing that the area of interest is located near the line 𝑘𝑖𝑛 equals 𝑘𝑜𝑢𝑡 narrows the search 

area. Further constraints arise from the nature of evaporation and condensation behavior. First, 

both constants must be positive.  Second, the kinetic theory of gases provides an upper bound on 

𝑘𝑖𝑛. Taken from the perspective of the kinetic theory of gases, the maximum 𝑘𝑖𝑛 flux rate is J, 

given by the product of the number density of gas molecules, the average speed of those gas 

molecules, and their rate of collision with an area a, given by: 

𝐽 = 𝑛𝑔 ∗ 𝐶 ∗
𝑎

4
                                                            (20) 

This is an upper bound for the rate of condensation, as molecules cannot enter faster than they 

collide with the surface.  Each of these terms follows from the kinetic theory of gases.  The 

number density is 

𝑛𝑔 =
𝑚𝑜𝑙𝑠

𝑐𝑚3                                                                 (21) 

Using the ideal gas law, we can then write: 

𝑛𝑔 =
𝑃

𝑅𝑇
                                                                   (22) 

The system is sealed, so the pressure is the the vapor pressure of DCM and remaining 

experimental conditions can be used to calculate: 
0.02326 𝑚𝑜𝑙𝑠

𝑙𝑖𝑡𝑒𝑟
=  

0.5655 𝑎𝑡𝑚

0.0821 
𝑙∗𝑎𝑡𝑚

𝑚𝑜𝑙∗𝑘
∗296.15 𝑘

                                    (23) 

The average speed of the molecules (derived via the Maxwell-Boltzmann treatment of the kinetic 

theory of gases) is: 

𝐶𝑎𝑣𝑔 =  √
8𝑅𝑇

𝜋𝑀
                                                                (24) 

Inputting in the calculated values: 

271.719 𝑚/𝑠 =
8∗8.314 𝐽∗𝑚𝑜𝑙−1∗𝐾−1

𝜋∗.08493 𝑘𝑔/𝑚𝑜𝑙
                                              (25) 
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Assuming the value for a is 0.02, or the relative chance a molecule striking the liquid will enter 

the liquid state, our values from equations (23) and (25) are used: 

0.03159 𝑚𝑜𝑙𝑠/𝑐𝑚2𝑠𝑒𝑐 =  2.326 ∗ 10−5 𝑚𝑜𝑙𝑠

𝑐𝑚3 ∗ 27,171.9
𝑐𝑚

𝑠𝑒𝑐
∗

0.02

4
                (26) 

One can calculate the surface area of the interface: 

0.0385 𝑐𝑚2 =  𝜋(. 035 𝑐𝑚)2                                               (27) 

This allows the calculation of the max 𝑘𝑖𝑛, given the area: 

1.22 ∗ 10−4 𝑚𝑜𝑙

𝑠𝑒𝑐
=  0.03159

𝑚𝑜𝑙𝑠

𝑐𝑚2𝑠𝑒𝑐
∗  0.0385 𝑐𝑚2                           (28) 

Because the minima of the objective function are near 𝑘𝑖𝑛= 𝑘𝑜𝑢𝑡, the upper bound for 𝑘𝑜𝑢𝑡 

to be the same as 𝑘𝑖𝑛 can be set. With some experimentation, we set the range of the 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 

values from 1.0E-10 mol/sec to 1 mol/sec. This range was chosen to be certain that we have 

covered the physically plausible range of evaporation and condensation values. 1.0E-10 mol/sec 

was chosen as the lower bound, as lower rates gave consistently higher values for the SSE. The 

Nelder-Mead method 5 was used for the optimization, as it is robust against undefined values, and 

computationally inexpensive. To avoid getting trapped in local minima, the algorithm is started at 

10 different seed locations spanning orders of magnitudes ranging from 1.0E-10 mol/sec to 1 

mol/sec. The results of this process are shown in Figure S42. for the PbI2 / aep / DMF:DMSO 

reaction.  
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Figure S42.  The ten best model fits for the PbI2 / aep / DMF:DMSO reaction. 

 

The highest quality fits have similar 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 values. This means that the random seeding is 

effective, as despite starting from different magnitudes, the minimum returns to the same area of 

the parameter space, with most of the experiments converging to a 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 value in the 1E-7 

mol/sec range. Furthermore, experiments with slightly different 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 values produce 

similar concentration profiles. When querying the best four fits at a random time point, the 

concentration profiles of high-quality fits are nearly identical. This leads us to conclude that 

parameter choices that are equally good matches for experimental data, give effectively the same 

concentration profiles. An example of this can be seen for the PbI2 / aep / DMF:DMSO reaction 

in Figure S43. The best four fits with low SSE are nearly indistinguishable from one another. 
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Figure S43.  Superimposed concentration profiles of the four best fit models for experiment 

the PbI2 / aep / DMF:DMSO reaction.  

 

 This optimization process is repeated three times to account for the lower, upper, and mean 

values of the diffusion coefficient. This results in three sets of values for the best fitting 𝑘𝑖𝑛 and 

𝑘𝑜𝑢𝑡 values, and a resulting window of possible concentrations. However, in general the quality of 

fit is insensitive to these differences, as shown for the example of PbI2 / aep / DMF:DMSO reaction 

in Figure S44.  
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Figure S44.  Solution height build up under the expected, lower, and upper bound diffusion 

coefficients for the PbI2 / aep / DMF:DMSO reaction. 

 

Experiment Truncation 

Because the model assumes a constant condensation rate of antisolvent into the solution, 

the experiments must be stopped before the antisolvent supply runs out. Additionally, it is useful 

to have a uniform cut off time to the model to save on computation time, particularly during the 

parameter estimation process. Because the antisolvent builds up at different rates for every 

experiment and crystallization occurs at various times, a cutoff was implemented based upon total 

solution height (0.72 cm) rather than elapsed time. This value was chosen because it stopped all 

models from running before their antisolvent supply ran out and did not prematurely stop before 

crystallization. This criterion merely enforces the validity of underlying assumptions, and does not 

affect the final concentration estimate. 

Results 

Having determined an experimental cutoff point for the model and chosen an optimization 

algorithm to determine the values of our free parameters, calculate the concentration profile of the 

mother liquor at crystallization were calculated. Once the model has simulated the diffusion over 

the length of the experiment, we simply query the concentrations at the time and position of 

crystallization. The results of our model are shown in Figure S45. 

 

Figure 10: The Expected, Upper Bound and Lower Bound 
Model Fits 



 S-51 

 
Figure S45.  Best fit model and concentration profile at crystallization in the PbI2 / aep / 

DMF:DMSO reaction. 

 

The dotted blue line indicates the height of crystallization. The intersection between the 

concentration curve and the dotted line shows the antisolvent concentration at the time and location 

of crystallization. The blue line gives the expected concentration, with the yellow and red lines 

indicating the upper and lower bounds. Other chemical species concentrations are reported in an 

output file but are not visualized above. 

Practical Limitations of the Model 

While we have established that the finite volume approximation holds for realistic rates of 

diffusion, condensation, and evaporation processes, very unphysical guesses can result in 

numerical errors or large increases in computer time as bins are merged and spawned.  Such 

unrealistic parameters might occur during an unsupervised numerical optimization.  To combat 

this, we imposed limitations on the maximum number of total bins (to prevent runaway spawning) 

and the bin merging criteria (to prevent negative concentrations) in the code.  This has no physical 

consequence, as these extreme parameter choices give a poor objective function and never get 

selected.  It is merely serves the practical purpose of keeping each simulation to a limited 

computational budget.  

 


