
Functional MRI 

3.3.1. What Is Functional MRI?  

  Functional Magnetic Resonance Imaging (fMRI) is a form of Magnetic Resonance 

Imaging that capitalizes on the varying magnetic properties of oxygenated and deoxygenated 

blood flow to create a variance in signal intensity indicating brain activity. FMRI images can be 

obtained during an active task or when the participant is at rest to examine regional activity as 

well as functional connectivity, defined as the correlated activity between two regions. Study 

design and data analyses of these two methods are discussed in more detail below.   

3.3.2. How Functional MRI Works 

In fMRI, quantification of the blood-oxygenation level dependent (BOLD) signal is used 

to assess locally increased blood flow in areas of neuronal activation. Specifically, when a brain 

region is active, blood flows to the area leading to an increase in the concentration of 

oxyhemoglobin relative to deoxyhemoglobin (Ricker and Arenth, 2008). Oxyhemoglobin is 

diamagnetic and deoxyhemoglobin is paramagnetic; their changing concentrations during 

activation cause local magnetic field inhomogeneities that can be detected using T2* weighted 

scans (Matthews, 2008). The changes in signal intensity from deoxyhemoglobin rich blood to 

oxyhemoglobin rich blood allows contrast between active and inactive brain regions. This BOLD 

signal change is generally quite small, from 1 to 6% (Tong et al., 2016). While the BOLD 

response is the foundation of the fMRI signal, it would be reductive to say that there is a 1:1 

relationship between BOLD and neuronal activation. It is important to distinguish that the BOLD 

response is not indicative of direct neuronal activity but rather the synaptic and dendritic 

electrical potentials (Matthews, 2008). 

Task-Based fMRI. Task-based fMRI assesses regional activation in response to a specific 

stimulus or task condition. While in the scanner, the participant is given a task, which can 

involve responses to visual or auditory stimuli or elicit more complex cognitive processes (i.e., 

decision-making). Tasks are selected or designed to tap a specific cognitive, emotional, or motor 

response or to “activate” a specific brain region. Task-based fMRI analyses typically utilize 

subtraction methods– examination of the BOLD signal during the condition of interest as 

compared to a control or comparison condition. This subtraction procedure is necessary to 

determine which areas are specifically activated during the task condition. Thus, all tasks require 

inclusion of such a control or contrast condition using either a block or event-related design. In a 

block design, the participant is exposed to experimental stimulus trials presented in blocks that 

are interleaved with blocks of a baseline/control condition. The block types are then compared. 

In event-related designs, the two stimuli are mixed, and analytic methods are used separate the 

responses to their respective stimuli (Stamatakis et al., 2017). Both experimental methods have 

their place. Block designs have increased statistical power in analysis and are more useful for 

detecting minute differences in activation (Friston et al., 1999). Event-related designs are more 

useful for events that cannot be presented all at once but rather require trial-by-trial shifts in 

conditions.  

Resting-State fMRI. The spontaneous BOLD signal fluctuations that underlie resting- 

state studies are measured fundamentally differently from the measurement of the BOLD signal 

in task-based studies. In task-based studies, many repetitions of a task are analyzed against a 

control condition in order to remove random neuronal noise (Stamatakis et al., 2017). In resting-

state studies, the emphasis is on the random neuronal noise, and there is no task-evoked response 

(Fox and Raichle, 2007). Specifically, resting-state fMRI capitalizes on the fact that the BOLD 

signal demonstrates low frequency oscillations (.01- 0.15 Hz) throughout the brain even when 



“at rest.” These oscillations are referred to as spontaneous BOLD signal fluctuations and they 

utilize nearly 20% of the body’s energy expenditure (Shulman et al., 2004). Thus, understanding 

what the brain is doing with that energy is an important step in elucidating brain function. 

Regions of the brain demonstrate BOLD signals that oscillate in tandem even in the absence of 

any complex task (Biswal et al., 1995). These correlations in spontaneous neuronal activity are 

indicative of functional connectivity, which can be defined as the temporal dependency between 

spatially remote neurophysiological events (Friston et al., 1993). It is crucial to note that while 

functional connectivity implies some level of structural connectivity between regions, it is not a 

measure of direct anatomical connections (Greicius et al., 2009).  

During resting-state fMRI, participants typically lie in the MRI scanner while instructed 

to relax and remain passive for anywhere from 6 to 30 minutes (Fox and Raichle, 2007). 

However, there are many different conditions for “rest.” Some paradigms have participants keep 

their eyes closed, while others ask the participant to stare passively at a fixed point or complete a 

continuous active task. More recently, participants have been scanned while watching brief 

movies, with the aim of reducing head motion and sleepiness (Vanderwal et al., 2015). This 

method has been shown to improve detection of interindividual differences in functional 

connectivity over traditional rest scans (Vanderwal et al., 2017). Overall, given the variability in 

conditions used to define a relaxed state, (Buckner et al., 2013) proposed that the resting-state be 

looked at as just another task-based state. They argue that resting-states have their own 

underlying cognitive processes, and the functional areas active during resting-state parallel those 

that are activated during internally directed mental tasks.   

3.3.3. Data Processing 

Task-Based fMRI. Here, we will briefly summarize the most common preprocessing 

steps that are taken prior to fMRI data analyses, but it is important to note that the exact 

procedures and order may differ depending on study needs. The first step in processing fMRI 

data is typically brain extraction to remove any non-brain structures from the image, which is 

followed by slice timing correction. Each slice in an fMRI scan is taken at a slightly different 

timepoint; slice timing correction adjusts the data so that the voxels all appear to have been 

acquired at the same time (Smith, 2001). Head motion can have a significant impact on fMRI 

data; thus, motion correction algorithms are used to mitigate this effect (Woolrich et al., 2001).  

The resulting images then undergo various smoothing and filtering procedures. Spatial 

smoothing is applied to each volume of the fMRI dataset to reduce noise without affecting the 

activation signal (Woolrich et al., 2001). Intensity normalization adjusts volume intensity so that 

all volumes have the same mean intensity. High and low frequency filters are then applied to 

each voxel’s time series to remove noise from heart rate, breathing and normal resting-state 

activation (Smith, 2001). The next steps are registration and normalization, which are critical 

when comparing scans across subjects. Registration is the process by which the fMRI scan is 

aligned with the subject’s own structural MRI scan and  normalization is the process by which 

the fMRI scans are then mapped to a standard space so that image related information can be 

compared between individuals (Woolrich et al., 2001). 

After the previous preprocessing steps, the images are ready to undergo statistical 

analysis to determine which voxels are activated. General linear modeling (GLM) is typically 

used to determine areas of statistically significant activation (Smith, 2001). The linear model can 

be thought of as an assumption of activation. It is based upon the “stimulus function” which is an 

on/off waveform that describes the timing of the stimulus. This stimulus function is then 

combined with the hemodynamic response function (HRF), which represents the shape of the 



BOLD signal’s typically response. The result is the linear model, which is a function that 

describes how the brain is expected to activate in response to the stimulus (Smith, 2001). This 

resulting linear model is then fit to each voxel in order to estimate how well the voxel’s behavior 

fits the model. This “goodness of fit” is defined by a corresponding Z value. If the Z value is 

significantly different from zero, then it can be concluded that activation has occurred (Smith, 

2001). This statistical modeling step outputs a significance value for each voxel that describes 

how well the model of activation fits the voxel’s time data. The resulting statistical map assigns a 

significance threshold to every voxel. However, this imposes a problem. Because the brain is 

described by so many voxels, even a significance of p < .01 means that hundreds of voxels will 

be marked as activated by chance alone. To solve this problem, Gaussian random field theory 

(GRF) is used for voxel thresholding. This method analyzes a smaller number of statistically 

independent voxels and rather considers clusters of activated voxels, applying the significance 

threshold to clusters rather than individual voxels. This lowers the probability of receiving a false 

positive result (Smith, 2001). After thresholding, the last remaining step is visualizing the 

activated areas of the brain. This is done by rendering the activated voxels in a specific color 

range, so that it is easy to identify the extent to which certain regions are active (Woolrich et al., 

2001). 

Resting-State fMRI. Resting-state fMRI relies on much of the same preprocessing steps 

as task-based fMRI. The brain image is extracted from the surrounding anatomy, slice-timing 

corrections are applied, motion is corrected, and the subject’s brain is mapped to a standardized 

space. Motion correction is particularly essential in resting-state fMRI as even the smallest head 

movements have been shown to alter functional connections (Power et al., 2015). Additionally, 

while low frequency spontaneous neuronal activity is filtered out of task-based fMRI data, this 

activity is the focus of resting-state fMRI (Heuvel and Pol, 2010). 

As indicated earlier, task-based fMRI analyses aim to examine areas of activation in 

response to a specific task or stimulus. Alternatively, resting-state fMRI analyses focus on the 

temporal correlations in spontaneous neural activation between voxels of anatomically separated 

regions. Several different model-dependent and model-free methods are used to determine these 

“functional connections” (Heuvel and Pol, 2010). Model-dependent methods are also known as 

seed-based methods. In these analyses, resting-state timeseries data from one region of the brain 

(the seed) is correlated with the time-series data of all other brain regions. The resulting output of 

correlations is called the functional connectivity map, and it describes the functional connections 

of the seed region (Biswal et al., 1995). This method is computationally simplistic, and results in 

straightforward, easily interpretable results. The functional connectivity map allows for a clear 

understanding of which regions have connectivity with your selected seed . 

 Model-free methods allow for the exploration of whole brain connectivity patterns. They 

are not constrained by a single starting seed. Instead, they examine patterns of connectivity 

across the brain. Independent component analysis (ICA), principal component analysis, and 

clustering, are all common methods used to analyze resting-state time series (Heuvel and Pol, 

2010). These model-free methods search for patterns in resting-state correlations across the 

whole brain and have revealed a number of canonical functional brain networks such as the 

“default mode network” which is discussed below in more detail (Raichle et al., 2001). Other 

networks have also been identified including the salience, sensorimotor, dorsal attention, and 

ventral attention networks, to name a few (Damoiseaux et al., 2006). As a result, resting-state 

fMRI methods have informed neural network models of brain function that are not easily 



obtained using task-based designs. Because of this, and the ease of acquiring resting-state 

images, the study of the brain in its resting-state has become an area of intense research.  

3.3.4. Applications 

 Functional MRI has been used to identify underlying neural mechanisms of various 

psychological disorders, such as schizophrenia, bipolar disorder, anxiety, and post-traumatic 

stress disorder. Alterations in functional connectivity as assessed using resting-state fMRI and in 

neural activation elicited using task-based methods have also been observed in patients with 

MDD. In this brief overview, both of these methods will be discussed as they pertain to 

depression research. 

Case Example: Depression. Task-based fMRI studies using tasks involving reward, 

emotion, and memory processing have demonstrated altered function of regions throughout the 

brain in patients with MDD, or at risk for MDD. Due to its relevance to MDD symptoms, the 

focus in this brief section will be on alterations in amygdala activity during emotion processing 

tasks. Atypical emotion processing is a hallmark symptom of MDD (Beck, 2008) and has been 

proposed to be associated with altered function of the amygdala.  For example, studies have 

found that individuals with depression exhibit increased amygdala responses to negative 

emotional stimuli, as compared to healthy controls (Peluso et al., 2009, Suslow et al., 2010). 

Further, this increased amygdala response appears to attenuate with antidepressant treatment 

(Sheline et al., 2001, Murphy et al., 2009). Using an implicit emotion identification task, Arnone 

and colleagues (2012) found that after eight weeks of citalopram, the MDD patients who reached 

full remission showed significant decreases in both left and right amygdala responses to sad 

faces. No differences were observed between medicated and nonmedicated patients in remission. 

Taken together, these results underscore the complex role of the amygdala in emotion processing 

in individuals with MDD and suggest that remission of symptoms is associated with a reduction 

of amygdala hyper-reactivity whether due to the result of antidepressant treatment or not.  

 Resting-state fMRI has been used to identify differences in functional connectivity of 

brain regions and networks in patients with MDD. While, depression has been associated with 

atypical functional connectivity of several large-scale neural networks, here, we will focus on the 

default mode network (DMN). The DMN consists of the medial prefrontal cortex (mPFC), 

inferior parietal cortex, posterior cingulate cortex (PCC), and the precuneus (Raichle et al., 2001, 

Shulman et al., 1997), which have been identified to work together as a unified network based on 

resting-state findings. The DMN is implicated in different aspects of cognition, such as social 

understanding and self-awareness (Greicius et al., 2003, Li et al., 2014), in addition to 

rumination and self-referential processes, both of which are associated with key features of 

depression (Nolen-Hoeksema et al., 2008). In a meta-analysis, (Kaiser et al., 2015) Kaiser and 

colleagues (2015) found that MDD patients exhibited hyperconnectivity between DMN regions, 

the medial prefrontal cortex, hippocampus, and dorsal lateral prefrontal cortex, as compared to 

healthy controls. Further, stronger resting-state functional connectivity within the DMN has been 

associated with greater rumination and self-referencing in individuals with depression (Berman 

et al., 2014), which further supports studies identifying negative rumination as a key feature of 

depression (Holtzheimer and Mayberg, 2011). Resting-state fMRI has also been a useful tool for 

uncovering putative neural mechanisms of MDD treatments. For example, Liston and colleagues 

(2014) used resting-state fMRI to analyze between and within connectivity of the DMN and 

central executive network (CEN) in depressed patients before and after a five-week treatment of 

transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC), and 

healthy control subjects. At baseline, depressed patients exhibited greater functional connectivity 



of the DMN than healthy controls. Following TMS, hyperconnectivity within the DMN was 

significantly reduced between the ventromedial prefrontal cortex, pregenual anterior cingulate 

cortex, and precuneus. This treatment effect was unique to the DMN and was not observed for 

the CEN, suggesting that changes in the functional connectivity of the DMN may be a 

mechanism of action of TMS treatment. 

In summary, as these studies illustrate, both task-based and resting-state fMRI are 

extremely valuable to clinical research. While this section focused on depression, these imaging 

methods are useful for investigating many aspects of different types of psychopathology and 

have implications for both the understanding of underlying mechanisms of these disorders and 

measuring treatment effectiveness. 

3.3.5. Advantages and Disadvantages 

Advantages. Functional MRI has great utility for examining brain function. As it relies 

on the hydrogen atoms native to the body, and the hemodynamics of neuronal activation, it 

requires no exogenous tracers. Under high strength magnetic fields (greater than 1.5 Tesla), 

fMRI has greater spatial resolution than that of PET or SPECT. In higher strength magnetic 

fields (greater than 4 Tesla) BOLD signal changes can be detected from micro vessels and 

capillaries, and not just in veins and large venules (Ricker and Arenth, 2008). The magnetic 

fields utilized by MRI also do not carry the same risk of radiation that PET, SPECT, and CT 

scans incur (Gerber and Gonzalez, 2013). Furthermore, the elucidation of connected brain 

networks through non-invasive imaging is incredibly promising.  

Disadvantages. Functional MRI has some drawbacks depending on the subject 

population and task at hand. Subjects must remain incredibly still, as slight movements cause 

artifacts in the imaging, and can even disturb the magnetic field (Ricker and Arenth, 2008). In 

resting-state studies, head motion has been linked to diminished connectivity between distant 

functional regions (Van Dijk et al., 2012). Even mouth movements used for conversational 

speech are too overt for fMRI. Thus, tasks must be designed to minimize movement, which, at 

times, also reduces their ecological validity and utility. Also, due to the high frequency noise of 

the scanner, the loud abrupt sounds of the magnetic coils, and the enclosed space of the machine, 

the experience may be aversive to potential participants (Ricker and Arenth, 2008). 

  

3.3. Diffusion Tensor Imaging (DTI)  

3.3.1. What Is DTI?  

  Diffusion Tensor Imaging (DTI) is a magnetic resonance-based technique that analyzes 

anatomic connectivity in the brain. It allows for a detailed evaluation of white matter structure 

and pathing. When used in conjunction with structural MRI data, DTI provides an important 

avenue for discerning both structure and organization of the brain and its constituent white 

matter. The ability to see physiological correlations in white matter tractography also allows for 

improved interpretation of functional MRI data. For example, DTI is often used to corroborate 

the anatomical connectivity of networks observed using resting-state fMRI functional 

connectivity methods (De Luca et al., 2006). As such, DTI has become a necessary step in 

bridging the gap between functional and structural imagery. 

3.3.2. How DTI Works  

In order to understand DTI, the underlying concepts must first be understood. The chief 

amongst them is anisotropy. Anisotropy describes the uneven motion of particles that DTI 

capitalizes on in order to measure microstructure and directionality of brain tissue, chiefly white 

matter. Normally, water’s motion is isotropic, meaning it moves equally in all directions. 



However, within bodily tissue, the motion is obstructed by biological structures (Hagmann et al., 

2006). Macromolecules and cell walls prevent the even distribution of motion. In the brain, the 

movement and directionality of water movement is usually relegated to tracts created by white 

matter axons. Diffusion occurs along the length of the axon within the cytoplasm, as water 

cannot easily diffuse into or out of the cell membrane. The degree to which anisotropy occurs is 

informative of the structure of the white matter. White matter that is more heavily myelinated has 

a thicker wall of tissue preventing the internal water molecules from diffusing out of the axon. 

While myelination prevents water from diffusing laterally out of the cell, it still allows for 

movement along the path of the axon (Wilde et al., 2017). 

 In order to quantify the anisotropic diffusion of water molecules and generate meaningful 

data, DTI relies on monitoring the activity of water molecules over time. Specifically, DTI 

measures the energy of water molecules in the brain at two time points. At the first time point, 

energy is imparted into the water molecules in the brain, and an MR image is made. This is 

called the B0 time point and indicates the initial amount of water. A second image is taken 1000 

milliseconds after. These sequential images become the basis for DTI image acquisition. If the 

water has diffused in the elapsed time period, the second image will indicate a lesser signal 

resulting from water content. (Hagmann et al., 2006). Therefore, there is an inverse relationship 

between water signal strength and the degree of water diffusion. To study the directionality of 

diffusion, water molecule movement in DTI is modeled along the x, y and z axes. By considering 

the movement along all axes, diffusion can be estimated in an ellipsoidal pattern, with the 

magnitude of motion being related to the length of the axes that create the ellipsoid. The longest 

axis of the ellipsoid indicates the greatest direction of motion, and typically lies along the axon 

of the neuron (Wilde et al., 2017). Therefore, an ellipsoid that has a longer, more extended shape 

represents a more anisotropic diffusion pattern, and a more spherical ellipsoid indicates more 

isotropic diffusion patterns (Basser, 2002). 

 The diffusion ellipsoid can be mathematically modeled as a 3x3 symmetric matrix, or a 

tensor (Soares et al., 2013). For our purposes, a tensor can be thought of as an array of values 

that can be solved to identify the magnitude and direction of diffusion. In order to fully define 

the tensor, a minimum of six diffusion directions must be measured (Le Bihan et al., 2001). 

However, sampling more diffusion directions results in a higher resolution image with fewer 

errors. For tracts of complex white matter modeling, it is not uncommon to take more than six 

measurements, and studies have used up to 64 diffusion directions (Alexander et al., 2007). 

While the diffusion ellipsoid is useful in understanding diffusion across multiple axes, it is not 

particularly effective for visualizing diffusion throughout the brain. To do this, tractography is 

used to reconstruct white matter tracts (Hagmann et al., 2006). Tractography involves 

visualization of white matter pathways using colors that represent the principal direction of 

diffusion.  

3.3.3. Data Processing 

DTI data can be analyzed in multiple ways. Two of the most common analyses are 

tractography and region of interest analysis, which rely on several measures, including fractional 

anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. Fractional anisotropy (FA) 

is a numerical value between 0 and 1 that represents the variance in diffusion along the main 

direction of motion. A value close to 1 indicates that the behavior is anisotropic, a value close to 

0 is more isotropic. Greater FA indicates greater structural integrity of the white matter pathway 

(Soares et al., 2013). Axial diffusivity (AD) is the coefficient of diffusion across the long axis of 

the ellipsoid, typically lying along the axon. Radial (RD) diffusivity is the coefficient of 



diffusion perpendicular to the long axis. Decreased axial diffusivity (AD), decreased fractional 

anisotropy (FA), and increased radial diffusivity (RD) are all indications of decreased white 

matter integrity (Hagmann et al., 2006). Mean diffusivity (MD) is the average of the magnitudes 

of diffusion across all three axes. These diffusion measurements (AD, RD and MD) are 

measured by the changes of water concentration following initial the B0 time point.  

Tractography is a DTI analysis technique that estimates the white matter pathways in the 

brain. It does this by looking at the continuity of diffusion measures along a vector. This 

indicates that there is a trajectory of water running through the vectors. This trajectory is called a 

“streamline.” While streamlines are indicative of white matter pathways, they are not direct 

images, but rather mathematical implications (Wilde et al., 2017). The advantage of the DTI 

model is that it allows for a good determination of pathway orientation, as it can determine the 

direction and magnitude of diffusion. While conventional DTI has issues with resolving multiple 

tracts of intersecting white matter within a single voxel, new approaches to diffusion 

measurement have allowed for the resolving of crossing fibers (Wedeen et al., 2008).  

Traditional DTI relies on the assumption of Gaussian diffusion, with only a single diffusion 

tensor per voxel (Basser, 2002). However, mathematical models have been developed to 

incorporate non-Gaussian distributions and resolve multiple diffusion tensors within a single 

voxel (Madden et al., 2012).  

For region of interest analyses or investigations of specific white matter tracts (Wilde et 

al., 2017), only one specific region of the brain is imaged, and the DTI measures for the area are 

calculated. This can be done in any selected area of the brain and is useful for determining the 

physiological effects of mental illnesses (Wilde et al., 2017, Snook et al., 2007). The technique is 

advantageous as it is less technically demanding and is more sensitive to smaller changes in 

structure (Park et al., 2004). However, ROI DTI analysis often involves co-registration of 

different sets of data, to consolidate into one coordinate plane. This can result in spatial 

distortion, which is compounded by the lower spatial resolution of DTI.  

3.3.4. Applications  

DTI has been commonly utilized in studies of aging and brain development and is an 

effective clinical tool used for diagnoses, analyzing the development of the brain in normal aging 

and neurodegeneration (Wilde et al., 2017). Here, we discuss MDD research studies that have 

used DTI to interrogate white matter integrity. 

Case Example: Depression. As indicated earlier, MDD has been associated with 

alterations in functional brain networks such as the default mode network. DTI allows for 

researchers to determine whether alterations in functional networks extend to the structural 

connectivity of the brain. For example, in a whole brain DTI study of 95 MDD patients 

compared to 102 healthy controls, there were significant white matter connectivity differences in 

two distinct networks. Patients with MDD showed reduced white matter connectivity and 

integrity in regions of the default mode network, and a frontal-subcortical network that included 

medial orbitofrontal cortex (mOFC) and caudate regions (Korgaonkar et al., 2014a).  

 This finding of decreased white matter integrity has been demonstrated across multiple 

studies. Meta-analyses find evidence of decreased fractional anisotropy within the bilateral 

frontal cortex of depressed patients, an area that is commonly shown to be reduced in volume in 

structural MR studies (Liao et al., 2013, Kumar et al., 2000). However, the extent to which these 

white matter structural differences are a result of disease pathology or the effects of medication 

is unclear. A meta-analysis of microstructural brain abnormalities in unmedicated MDD 

participants found four regions of decreased fractional anisotropy, the right cerebellum 



hemispheric lobule, the corpus callosum, and the bilateral superior longitudinal fasciculus (SLF) 

(Jiang et al., 2017). Subgroup analysis from this study indicated that participants suffering from 

MDD in medication washout studies and first episode medication naïve MDD participants 

showed different regional patterns of decreased FA. This finding suggests that either longer 

MDD duration, or previous medication, contributes to increased frontostriatal degeneration, 

which was not observed in the first episode patients. 

 DTI studies have recently been used to find predictors of treatment outcomes in patients 

suffering from MDD. In a 2014 study, DTI was used to identify predictive biomarkers within the 

white matter tracts of MDD patients. For example, FA of the stria terminalis, a key area of the 

limbic system, and the cingulate gyrus part of the cingulum have been shown to predict 

remission in patients receiving antidepressants (Korgaonkar et al., 2014b). The fractional 

anisotropy of the two tracts were 62% accurate at predicting remission, but accuracy increased to 

74% when adding patient age to the model. A more recent DTI study found that MDD patients 

who responded positively to medication had greater white matter integrity than non-responders 

in several key regions of interest in the frontotemporal white matter and in the cortical systems 

including those involved in psychomotor and reward processes (Davis et al., 2019).  

In summary, DTI studies have indicated it is possible to find biomarkers that are 

predictive of treatment outcomes. By analyzing key white matter pathways, researchers can 

determine whether an individual will respond well to SSRI medication. Whether it is by 

analyzing the white matter structures responsible for psychomotor and reward networks, or by 

the fractional anisotropy measures of the limbic system, it is clear that MDD treatments leave 

their mark on the structure of the brain (Davis et al., 2019, Jiang et al., 2017). These studies show 

that medication options result in lasting structural changes to the brain of MDD patients, and that 

these differences depend on the therapeutic response.   

3.3.5. Advantages and Disadvantages 

 Advantages. DTI provides detailed insight into structural neural pathways and networks, 

unique from any other neuroimaging modality.  Prior to the invention of DTI, it was only 

possible to obtain measurements of white matter structure post-mortem (Mori and Zhang, 2006). 

Additional advantages of DTI include its brief acquisition time, accessibility and relevancy to 

clinical research, and availability for implementation (Descoteaux, 1999). 

 Disadvantages. While DTI has many advantages, there are limitations that should also be 

considered. Due to its reliance on magnetic resonance imaging, DTI has the same disadvantages 

of structural MRI that have been previously discussed. In addition to this, DTI also requires a 

relatively complex processing pipeline above and beyond that needed for structural MRI; 

therefore, it does present unique disadvantages. One of the challenges of DTI is interpretation of 

the data, especially in a clinical context (O'Donnell and Westin, 2011). For example, many 

factors can influence changes in fractional anisotropy, such as cell death or changes in 

myelination (O'Donnell and Westin, 2011).  

 

3.4.Magnetic Resonance Spectroscopy (MRS) 

3.4.1. What Is MRS? 

Magnetic Resonance Spectroscopy (MRS) relies on the same principles of magnetic 

resonance that MRI utilizes. However, while MRI utilizes resonance signals from hydrogen 

protons to generate an image of brain structure, MRS uses resonance signals from hydrogen and 

other atoms to produce spectral data representing chemical composition of molecules in the brain 

(Tognarelli et al., 2015). As MRS can be performed with most modern MRI machines with only 



a few modifications, it is often added to scanning sequences in order to monitor brain 

biochemistry and metabolism. This allows for the creation of a neurochemical profile of a brain 

region in conjunction with the structure elucidated by MRI. Before MRS, there were no 

noninvasive techniques to assay the products of gene expression or metabolism in the human 

brain. In MRS, neuroscientists have a powerful technique that can work alongside other imaging 

methods to elucidate the internal biochemistry of the brain. 

3.4.2. How MRS Works 

There are many MRS methods available to clinicians and researchers that allow for the 

assessment of various neurometabolites. Initially, only 1H MRS, also known as proton MRS, was 

used to non-invasively examine brain metabolism. However, as localization techniques 

advanced, 1H MRS was joined by localized carbon-13, nitrogen-15, flourine-19, sodium-23, and 

phosphorus-31 spectroscopy (Gujar et al., 2005). Each targeted isotope comes with its own suite 

of pros and cons, and can be used to track specific metabolites in the brain. Currently, 1H MRS is 

the most widely used MRS method in neurologic and psychiatric research. It utilizes the same 

radiofrequency waves as routine MRI scanning and therefore requires no upgrades or changes to 

the MRI machine, which makes it a cost-effective add-on to a scan. 1H MRS is capable of 

recognizing 15 of the 80 brain metabolites observable through MRS (Lin et al., 2005), which 

include lipids, lactates, glutamate, creatine, choline, and myoinositol (Gujar et al., 2005). 

Spectroscopy utilizing the other isotopes can detect the presence of the other remaining 

metabolites, like transaminase and urea (Ross and Bluml, 2001). 

MRS relies on three primary mechanisms of magnetic resonance to create a spectrum: 

nuclear spin, chemical shift, and spin – spin coupling (Tran et al., 2009). Nuclear spin is a 

property of atoms with magnetic nuclei, such as hydrogen and carbon-13. As described at the 

beginning of the MRI Methods section, an atom’s spin can be thought of as the nucleus of an 

atom spinning about its axis. This spin creates a directional magnetic field. In the presence of a 

strong magnetic field, such as the one present in an MRI machine, the magnetic atoms become 

very organized, with some orienting in the same direction as the magnetic field (B0), and some in 

the opposite direction (Tognarelli et al., 2015). When a radiofrequency of the appropriate amount 

of energy is applied it can flip the atoms that aligned with the B0 field to the opposite direction; 

this is called resonance. When this occurs, a peak is created in the MRS spectrum. This 

phenomenon forms the basis of spectroscopy and allows for the determination of chemical 

structure. Molecules of different composition go into resonance and create peaks at different 

radiofrequencies. Examining the frequency at which a peak occurs offers clues to the chemical 

composition of a molecules. The area underneath the peak (or the integration) offers an 

indication of that molecule’s relative concentration. 

Atoms experience different magnetic fields depending upon their surrounding chemical 

environment. The electrons and dipole moments of neighboring atoms influence the overall 

applied field and the radiofrequency at which a specific atom goes into resonance and creates a 

peak in the MRS spectrum. This effect is called the chemical shift. Nuclei can be shielded from 

the applied magnetic field by a surrounding electron cloud or can be de-shielded by strongly 

positive magnetic fields (Tognarelli et al., 2015). This influences the radiofrequency at which a 

peak is created in the MRS spectrum. One can determine the composition of biological tissue by 

examining the positions of the peaks, or chemical shifts, of an MRS spectra resulting from this 

shielding. Specific molecules can be identified by their known chemical shift frequencies.  

Spin-spin coupling is the phenomenon by which the magnetic spin of one atom 

influences the spin of a neighboring atom. This causes the spectra from the atoms to be split, 



with multiple peaks centered around a central frequency. Depending on the number of peaks in 

the spectra, it is possible to determine the number and orientation of the adjacent atoms (Lin et 

al., 2005). The splitting pattern of the peaks provides information about the structure and 

topography of the molecule.  

3.4.3. Data Processing 

 As discussed earlier, MRS is used to quantify neurochemicals throughout the brain based 

on the generated spectrum. As one of the most common applications in psychiatric research is 

examination of glutamate signaling, this will be discussed here as examples of how MRS data 

are processed and analyzed. There are three key features of an MRS spectrum that are analyzed 

to deduce chemical composition. The first feature is the position of the peaks, or the chemical 

shifts, which are caused by the different magnetic fields experienced by each atom in the scanned 

area. Molecules have characteristic chemical shifts, and so they can be used to determine 

identity. Chemical shift is described in units of parts per million (ppm) and is the x-axis of an 

MRS spectrum. In 1H MRS, glutamate and its metabolite glutamine (collectively labeled Glx) 

create peaks in the MR spectra between 2.1 and 2.4 ppm (Lin et al., 2005). The second key 

feature is the integrated intensity, or the area under the peak of each signal. The integration 

provides information about the relative concentration of the molecules with larger concentrations 

being represented by peaks with larger integration. For example, the normal cerebral 

concentration of glutamate is between 3.0 and 12.5 mmol/kg (Tran et al., 2009). This 

characteristic of integration forms the basis for quantitative MRS, which is a technique that 

allows for the estimation of metabolite concentration within the brain (Alger, 2010). The last 

feature of the MRS spectrum is the spin-spin coupling pattern which manifests itself as multiple 

peaks centered about a central chemical shift. The pattern of the peaks provides additional 

information as to the structure of the molecule. For example, in an MRS spectrum with a Glx 

signal, the spin-spin coupling pattern manifests itself as two clusters of peaks between 2 and 2.5 

ppm. One of the peaks is a triplet pattern, and the other is a quartet. Molecules that are 

structurally similar in turn have similar spin-spin coupling patterns (Bertholdo et al., 2013). 

Glutamate and glutamine are typically indistinguishable as a single signal in the 1H MRS spectra, 

but in higher field strengths (>3T) it is possible to resolve the two peaks (Mullins et al., 2008).  
3.4.4. Applications 

MRS allows researchers and clinicians to track the presence of specific neurotransmitters 

throughout the brain in real time, making it an invaluable tool in neurological diagnoses and 

brain metabolism monitoring. A wide array of illnesses from Alzheimer’s to hypoxia all have 

physiological indicators that can be observed through 1H MRS (Tran et al., 2009). For example, 

glutamate can be a useful biomarker for stroke, lymphoma, and other metabolic brain disorders 

and the choline to creatine concentration ratio is a common indicator used by radiologists for 

tumor diagnoses (Lin et al., 2005). GABA and glutamate 1H MRS are important tools for 

psychopharmacological inquiry. As GABA is one of the primary inhibitory neurotransmitters 

within the brain, and glutamate is the major excitatory neurotransmitter, drugs that regulate their 

concentration and transmission are of great clinical interest.  

Case Example: Depression. MRS provides an invaluable tool when examining the 

neurobiological correlates of MDD, as it allows for the noninvasive observation of Glx 

metabolites and GABA concentrations. GABA and glutamate dysfunctions have long been 

implicated as a possible physiological cause for depressive symptoms (Duman et al., 2019). 1H 

MRS has been pivotal in elucidating the role of GABAergic and glutamatergic neurometabolism 

in the disorder’s pathology. 



Preclinical rodent and primate studies of depression suggest significant neuronal atrophy 

in the hippocampus and prefrontal cortex hypothesized to result from the degeneration of 

excitatory glutamate projection neurons (Duman et al., 2016). 1H MRS studies have been used to 

test this hypothesis in vivo in human patients. For example, researchers utilizing MRS have 

found lowered levels of glutamate neurometabolites in regions of the medial prefrontal cortex in 

unmedicated patients with MDD (Moriguchi et al., 2019). Furthermore, in conjunction with 

fMRI studies, decreased glutamate in the anterior cingulate cortex (ACC) is associated with 

decreased BOLD response to emotional stimuli in those with MDD (Lener et al., 2017).  

Disruption of GABA modulation is theorized to reduce the integrity and control of 

excitatory neurotransmission in patients with MDD (Fee et al., 2017). GABA MRS studies have 

reported lower levels of GABA levels in cortical regions of patients suffering from MDD 

(Godfrey et al., 2018). This is consistent with postmortem studies of MDD patients that show 

decreased levels of the GABA synthetic enzyme GAD67 in the prefrontal cortex, and losses of 

GABAergic interneurons in the dorsolateral prefrontal cortex (Guilloux et al., 2012, Rajkowska 

et al., 2007). While GABA MRS studies show lower concentrations of the neurotransmitter in 

MDD patients, it appears to be state dependent, as patients in remission show no difference in 

GABA concentration when compared to non- depressed controls (Gerard Sanacora et al., 2003). 

 MRS techniques may be most promising in pharmacological studies of MDD. In the 

development of novel drugs, MRS is used to determine the degree to which the drug modulates 

the targeted neurometabolite, which allows for the expedited screening of promising candidates 

(Egerton, 2019). The clinical efficacy of drug treatments can also be examined using GABA and 

Glx concentrations as indicators of predicted therapeutic outcome (Egerton, 2019). This use of 

MRS to further develop and study drug mechanism has been used recently in the development of 

ketamine as a pharmacological treatment for MDD (Bojesen et al., 2018, Javitt et al., 2018). In 

studies of animal models of depression, ketamine-induced normalization of glutamate levels 

decreases regional cerebral blood flow (rCBF), which in turn prevents structural changes in the 

hippocampus (Schobel et al., 2013). An MRS study of healthy humans confirmed that a similar 

modulation of rCBF by the normalization of glutamate levels occurs in the anterior cingulate 

cortex after dosage with ketamine (Bojesen et al., 2018). This supports the use of ketamine to 

prevent MDD-related structural changes in the brain through the modulation of rCBF by 

glutamate management. Other studies of ketamine utilize MRS examinations of glutamate 

changes in the frontal and occipital lobe to understand the drug’s therapeutic mechanism. In a 

study using 7T 1H-MRS scanning, Evans et al., (2018) (Evans et al., 2018) found that contrary to 

expectations, there were no significant differences in metabolite concentrations between patients 

with MDD and healthy controls, or correlations between glutamate concentrations and mood. 

However, MDD subjects tended to have higher levels of glutamate concentration following 

ketamine infusions, indicating a greater sensitivity to the drug. Furthermore, there were two 

distinct groups of MDD patients: one that tended towards increases in glutamate concentration 

following ketamine infusion, and a second group that did not experience any increase . In short, 

MRS allows pharmaceutical researchers to examine a drug’s direct effect on a specific 

metabolite, more quickly screen drug candidates, and then translate findings from rodent to 

humans using the same biomarker. 

3.4.5. Advantages and Disadvantages 

Advantages. MRS is largely available in any facility with a modern MRI scanner, often 

allowing it to be relatively inexpensive and accessible to add on to MRI scanning sequences . 

Further, it can complement other functional and structural neuroimaging techniques by providing 



unique information concerning the chemical composition of the scanned brain area. In addition, 

in vivo MRS is non-invasive, and does not expose subjects to ionizing radiation as methods such 

as PET and SPECT do (Gerber and Gonzalez, 2013).  

Disadvantages. MRS has the same contraindications as other MRI-based methods. In 

addition, compared to other MRI-based methods, in vivo MRS has relatively low spatial and 

temporal resolution, as well as a low signal-to-noise ratio (Gerber and Gonzalez, 2013, 

Tognarelli et al., 2015, Alger, 2010). Furthermore, the general limited ability of MRS to build 

images causes precise visual interpretation of results to be difficult. Quantitative MRS measures 

of metabolite concentrations are associated with potential challenges as well. For example, 

methods involving quantification relative to another metabolite may require certain assumptions 

about the system. For instance, one might assume that creatine levels do not change across 

healthy and diseased states when using creatine as a reference metabolite. Although absolute 

quantification appears theoretically more desirable, it is often difficult practically, also involves 

using ratios (with a different reference signal), and can be biased by methodological choices and 

assumptions as well. True metabolite concentrations are being estimated, and precision greatly 

depends on the methodology used. Overall, reliable MRS quantification is quite complex, but is 

possible when one does account for the many considerations that are required for accuracy 

(Alger, 2010). 

 

Conclusion 
In summary, the goal of this chapter was to summarize neuroimaging methods in order to 

make them more accessible to the broader clinical psychology community. While each technique 

comes with its own advantages and disadvantages, they have all contributed significantly to 

current neurobiological models of psychopathology, including major depression as detailed in 

this chapter. Additionally, they have contributed to the development of pharmacological 

interventions and to our understanding of underlying mechanisms of effective psychotherapy. As 

technological advances continue to be made, such methods will be further refined are sure to lead 

to the development of multiple methods for studying the human brain in vivo. 
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